
dev.size() (width, height)
par("din") (r.o.) (width, height) in inches

Both the dev.size function and the din
argument of par will tell you the size of the
graphics device. The dev.size function will
report the size in

1. inches (units="in"), the default
2. centimeters (units="cm")
3. pixels (units="px")

Like several other par arguments, din is
read only (r.o.) meaning that you can ask
its current value (par("din")) but you
cannot change it (par(din=c(5,7)) will fail).

How Big is Your
Graph?

An R Cheat Sheet
Introduction

CC BY Steve Simon, P.Mean Consulting • mail@pmean.com • https://www.rstudio.com/resources/cheatsheets/ Learn more at blog.pmean.com/cheatsheets • Updated: August 2017

Your plot margins

par("mai") (bottom, left, top, right) in inches
par("mar") (bottom, left, top, right) in lines

Margins provide you space for your axes, axis,
labels, and titles.

A "line" is the amount of vertical space needed
for a line of text.

If your graph has no axes or titles, you can
remove the margins (and maximize the
plotting region) with

par(mar=rep(0,4))

Your graphics device

All functions that open a device for graphics
will have height and width arguments to
control the size of the graph and a
pointsize argument to control the relative
font size. In knitr, you control the size of
the graph with the chunk options, fig.width
and fig.height. This sheet will help you with
calculating the size of the graph and
various parts of the graph within R.

Your x-y coordinates

par("usr") (xmin, ymin, xmax, ymax)

Your x-y coordinates are the values you use
when plotting your data. This normally is not
the same as the values you specified with the
xlim and ylim arguments in plot. By default, R
adds an extra 4% to the plotting range (see
the dark green region on the figure) so that
points right up on the edges of your plot do
not get partially clipped. You can override
this by setting xaxs="i" and/or the yaxs="i" in
par.

Run par("usr") to find the minimum X value,
the maximum X value, the minimum Y value,
and the maximum Y value. If you assign new
values to usr, you will update the x-y
coordinates to the new values.

Your plotting region

par("pin") (width, height) in inches
par("plt") (left, right, bottom, top) in pct

The pin argument par gives you the size
of the plotting region (the size of the device
minus the size of the margins) in inches.

The plt argument gives you the percentage
of the device from the left/bottom edge up
to the left edge of the plotting region, the
right edge, the bottom edge, and the top
edge. The first and third values are
equivalent to the percentage of space
devoted to the left and bottom margins.
Subtract the second and fourth values from
1 to get the percentage of space devoted to
the right and top margins.

Getting a square graph

par("pty")

You can produce a square graph manually
by setting the width and height to the same
value and setting the margins so that the
sum of the top and bottom margins equal
the sum of the left and right margins. But a
much easier way is to specify pty="s",
which adjusts the margins so that the size
of the plotting region is always square, even
if you resize the graphics window.

Converting units

For many applications, you need to be able
to translate user coordinates to pixels or
inches. There are some cryptic shortcuts,
but the simplest way is to get the range in
user coordinates and measure the
proportion of the graphics device devoted to
the plotting region.

user.range <- par("usr")[c(2,4)] -
par("usr")[c(1,3)]

region.pct <- par("plt")[c(2,4)] -
par("plt")[c(1,3)]

region.px <-
dev.size(units="px") * region.pct

px.per.xy <- region.px / user.range

To convert a horizontal or distance from the
x-coordinate value to pixels, multiply by
px.per.xy[1]. To convert a vertical distance,
multiply by region.px.per.xy[2]. To convert
a diagonal distance, you need to invoke
Pyhthagoras.

a.px <- x.dist*px.per.xy[1]
b.px <- y.dist*px.per.xy[2]
c.px <- sqrt(a.px^2+b.px^2)

To rotate a string to match the slope of a line
segment, you need to convert the distances
to pixels, calculate the arctangent, and
convert from radians to degrees.

segments(x0, y0, x1, y1)
delta.x <- (x1 – x0) * px.per.xy[1]
delta.y <- (y1 – y0) * px.per.xy[y]
angle.radians <- atan2(delta.y, delta.x)
angle.degrees <- angle.radians * 180 / pi
text(x1, y1, "TEXT", srt=angle.degrees)

mailto:mail@pmean.com
https://www.rstudio.com/resources/cheatsheets/

CC BY Steve Simon, P.Mean Consulting • mail@pmean.com • https://www.rstudio.com/resources/cheatsheets/ Learn more at blog.pmean.com/cheatsheets • Updated: August 2017

If your fonts are too big or too small

par("cin") (r.o.) (width, height) in inches
par("csi") (r.o.) height in inches
par("cra") (r.o.) (width, height) in pixels
par("cxy") (r.o.) (width, height) in xy
coordinates

The single value returned by the csi
argument of par gives you the height of a
line of text in inches. The second of the two
values returned by cin, cra, and cxy gives
you the height of a line, in inches, pixels, or
xy (user) coordinates.

The first of the two values returned by the
cin, cra, and cxy arguments to par gives
you the approximate width of a single
character, in inches, pixels, or xy (user)
coordinates. The width, very slightly smaller
than the actual width of the letter "W", is a
rough estimate at best and ignores the
variable with of individual letters.

These values are useful, however, in
providing fast ratios of the relative sizes of
the differing units of measure

px.per.in <- par("cra") / par("cin")
px.per.xy <- par("cra") / par("cxy")
xy.per.in <- par("cxy") / par("cin")

Character and string sizes

strheight()

The strheight functions will tell you the height
of a specified string in inches
(units="inches"), x-y user coordinates
(units="user") or as a percentage of the
graphics device (units="figure").

For a single line of text, strheight will give you
the height of the letter "M". If you have a string
with one of more linebreaks ("\n"), the
strheight function will measure the height of
the letter "M" plus the height of one or more
additional lines. The height of a line is
dependent on the line spacing, set by the
lheight argument of par. The default line
height (lheight=1), corresponding to single
spaced lines, produces a line height roughly
1.5 times the height of "M".

strwidth()

The strwidth function will produce different
widths to individual characters, representing
the proportional spacing used by most fonts (a
"W" using much more space than an "i"). For
the width of a string, the strwidth function will
sum up the lengths of the individual characters
in the string.

par("fig") (width, height) in pct
par("fin") (width, height) in inches

If you display multiple plots within a single
graphics window (e.g., with the mfrow
or mfcol arguments of par or with the layout
function), then the fig and fin arguments will
tell you the size of the current subplot window
in percent or inches, respectively.

par("oma") (bottom, left, top, right) in lines
par("omd") (bottom, left, top, right) in pct
par("omi") (bottom, left, top, right) in inches

Each subplot will have margins specified
by mai or mar, but no outer margin around the
entire set of plots, unless you specify them
using oma, omd, or omi. You can place text
in the outer margins using the mtext function
with the argument outer=TRUE.

par("mfg") (r, c) or (r, c, maxr, maxc)

The mfg argument of par will allow you to
jump to a subplot in a particular row and
column. If you query with par("mfg"), you will
get the current row and column followed by
the maximum row and column.

If your axes don’t fit

There are several possible solutions.

1. You can assign wider margins using the
mar or mai argument in par.

2. You can change the orientation of the
axis labels with las. Choose among

a. las=0 both axis labels parallel
b. las=1 both axis labels horizontal
c. las=2 both axis labels perpendicular
d. las=3 both axis labels vertical.

Fixing this takes a bit of trial and error.

1. Specify a larger/smaller value for the
pointsize argument when you open your
graphics device.

2. Trying opening your graphics device with
different values for height and width. Fonts
that look too big might be better
proportioned in a larger graphics window.

3. Use the cex argument to increase or
decrease the relative size of your fonts.

3. change the relative size of the font
a. cex.axis for the tick mark labels.
b. cex.lab for xlab and ylab.
c. cex.main for the main title
d. cex.sub for the subtitle.

Panels

mailto:mail@pmean.com
https://www.rstudio.com/resources/cheatsheets/

